Thursday, September 3, 2020

Pioneer SX-828 Receiver Restoration

Unit: AM/FM Stereo Receiver
Manufacturer: Pioneer
Model: SX-828
SN: SF1600962

One of my customers asked me to test and repair this beautiful vintage receiver. He bought it almost 20 years ago and it has been sitting in his storage since then. The receiver is in excellent cosmetic condition with a very nice-looking engraved faceplate. It is a very well-built receiver but not the easiest to work on. However, it was worth the effort. According to the Pioneer database, this unit was manufactured in June 1972.

The Pioneer SX-828 was manufactured from 1972 to 1974. It produces 54 watts per channel into 8 ohms with no more than 0.5% total harmonic distortion. The list price in 1972 was $429.95 (Ref. Stereo Review, March 1972, page 1). It quickly jumped to $469.95 in the following year. The SX-828 model was “one of Pioneer's most prized packages, with a wealth of outstanding performance in an AM/FM solid-state stereo receiver. The SX-828 is a big power AM/FM stereo receiver with advanced circuit design, outstanding FM selectivity and sensitivity, and linear scale tuning dial”.

Below are some photos I took during my restoration process, complete with comments and recommendations. This receiver had some issues with electronics which I will describe in detail below.

Update: a few months later, I was working on another SX-828 and serviced all boards except a tuner section. Refer to the following article for details: Pioneer SX-828 receiver restoration. 

AF Pre-Amp Board

During my initial evaluation, I noticed a significant “pop” sound in both speakers when the low filter switch was turned on. The protection relay was engaged for a few seconds and the sound was killed for a moment. I checked the AF Pre-Amp board (#AWK-012) and found that all original coupling capacitors installed on this board are sky-blue Sanyo electrolytic caps. These e-caps have a bad reputation to get electrically leaky over time. As a result, they eventually fail shorted and allow DC to pass through the circuit. I tested all original capacitors from this board and the results are below. Notice that the factory capacitance tolerance is usually +/- 20%.

Test results on sky blue Sanyo capacitors removed from AF Pre-Amp board:

C15: rated capacitance – 1.5uF, measured capacitance – 1.9uF, deviation: +26.7%
C16: rated capacitance – 1.5uF, measured capacitance – 2.0uF, deviation: +33.3%
C25: rated capacitance – 3.3uF, measured capacitance – 4.6uF, deviation: +39.4%
C26: rated capacitance – 3.3uF, measured capacitance – 4.8uF, deviation: +45.5%
C31: rated capacitance – 2.2uF, measured capacitance – 3.0uF, deviation: +36.4%
C32: rated capacitance – 2.2uF, measured capacitance – 3.2uF, deviation: +45.5%
C37: rated capacitance – 1.0uF, measured capacitance – N/A, resistance – 15.9 kΩ
C38: rated capacitance – 1.0uF, measured capacitance – N/A, resistance – 1.6 kΩ
C45: rated capacitance – 3.3uF, measured capacitance – 4.4uF, deviation: +33.3%
C46: rated capacitance – 3.3uF, measured capacitance – 4.5uF, deviation: +36.4%

As one can see, the test results show a large deviation from the rated capacitance for all sky blue Sanyo caps. Two caps C37/C38 actually act as resistors in the circuit instead of coupling capacitors. These two bad caps are a root cause for a significant “pop” sound in both speakers when the low filter switch is turned on. The DC is not blocked to pass through the circuit due to those bad caps. I replaced all sky blue Sanyo e-caps with low leakage Nichicon UKL caps and the “pop” sound has gone. The remaining e-caps on this board were replaced with Nichicon UFG. Notice that the AF Pre-Amp board is a double solder PCB which is a major problem to work on. I recommend being very patient and careful if you need to service this board to prevent any overheating while unsoldering electronic components.

AF Pre-Amp board (#AWK-012) - before and after

One of sky blue Sanyo e-caps - the deviation from rated capacitance is 45.5%

Power Supply Board

The second problem with this receiver was with the power supply board (#AWR-010). Two transistors Q1 and Q3, and the resistor R12 are running very hot under normal operating conditions often damaging the PCB. The nylon screw holding the heat sink to the transistor Q3 was overheated and broken. As a result, the heat sink has fallen off. The insulation on one lead of resistor R12 was melted due to extensive heat and the PCB was discolored. I measured the voltage drop across resistor R12 and it was almost 25V. Using Ohm’s law, the current flowing through this resistor is 25V/330Ohm = 0.075A. The electrical power dissipated by a resistor is 0.075A x 25V = 1.89W. The resistor R12 has a rated power of 2W which is very close to its working limit. I replaced the affected resistor with a flameproof 3W metal oxide resistor to improve its heat dissipation. I also replaced transistors Q1 and Q3 with Fairchild MJE transistors due to better thermal characteristics in comparison to the original transistors. All electrolytic capacitors on the power supply board were replaced with low impedance and high-reliability Nichicon UPW caps. I tested all original e-caps removed from this board and found that two e-caps C5 and C13 were completely out of spec.

Test results on 8 original capacitors removed from the Power Supply board:

C5: rated capacitance – 1000uF, measured capacitance – 92uF, deviation: -90.8% (the capacitance is almost 10 times lower!)
C6: rated capacitance – 100uF, measured capacitance – 120uF, deviation: +20.0%
C7: rated capacitance – 100uF, measured capacitance – 111uF, deviation: +11.0%
C8: rated capacitance – 100uF, measured capacitance – 122uF, deviation: +22.0%
C9: rated capacitance – 100uF, measured capacitance – 115uF, deviation: +15.0%
C10: rated capacitance – 220uF, measured capacitance – 254uF, deviation: +15.5%
C12: rated capacitance – 220uF, measured capacitance – 276uF, deviation: +25.5%
C13: rated capacitance – 470uF, measured capacitance – 9.1uF, deviation: -98.1% (the capacitance is almost 50 times lower!)

Power Supply Board (#AWR-010) - PCB discoloration due to excessive heat

Power Supply Board (#AWR-010) - old transistor Q3 and resistor R12 removed, all e-caps replaced

Power Supply Board (#AWR-010) - new Fairchild MJE transistors Q1 & Q3 and resistor R12 installed

Capacitor C13 was removed from the Power Supply board - the measured capacitance is almost 50 times lower!

Power Supply Board (#AWR-010) - before and after

Dial and Indicator Lamps

To replace 5 dial lamps I pulled off all knobs from shafts, removed nuts and washers from their shafts, removed a faceplate, and then carefully pulled off four clips holding a dial scale. Those four clips are very brittle and can be easily broken. I strongly recommend using an appropriate plastic tool and being gentle when removing those clips. I used a plastic tool with a very thin blade from an iPhone repair kit and it worked great. All original incandescent bulbs were replaced with warm white LED lamps to maintain the original look and decrease heat. I also replaced two original bulbs behind the signal strength and FM tuning meters with warm white LED lamps. However, it was a tricky place to work on due to the lack of space. Ideally, the dial cord should be removed to give more access to the bulb holder. But who wants to replace a dial cord string on those vintage gears if it works perfectly?!

The stereo indicator bulb burned out and I replaced it with a new incandescent bulb. The original rubber (?) holder for the stereo indicator bulb has dried and degraded due to age and eventually became very stiff. I used an X-ACTO #2 Knife to remove the original bulb from this fragile holder carefully trimming around the bulb. Then I put a heat shrink on a new incandescent bulb to slightly increase its diameter, inserted it into the holder, and secured it with super glue. I would say it was a very delicate work but fortunately the holder was not destroyed.

Original incandescent bulbs behind the signal strength and FM tuning meters

Warm white LED lamps behind the signal strength and FM tuning meters

DC offset and Bias Adjustments

Finally, I checked and adjusted the DC offset and Bias on the main amplifier unit. For some reason, this procedure is not described in the original manual but it is pretty much straightforward.

Trimmer VR1 on the main amplifier unit (#AWH-010) controls the DC offset measured between pin 7 and the ground. Trimmer VR2 controls the DC offset measured between pin 8 and the ground. I adjusted the DC offset as close as possible to 0V.

The bias measured between pins 11 and 17 is controlled by trimmer VR3 for one channel and between pins 12 and 18 by trimmer VR4 for another channel. I adjusted the bias to ~15mV on each channel.

As usual, all the knobs and the faceplate were gently cleaned in warm water with dish soap. Also, all pots have been cleaned with DeoxIT 5% contact cleaner and lubricated with DeoxIT FaderLube 5% spray.

The final result can be seen in the photos below. The receiver works perfectly now, the sound is very nice, smooth, and fairly well detailed. All issues with electronics have been solved and the receiver has a perfect look again. Thanks for reading.

Pioneer SX-828 - before restoration

Pioneer SX-828 - after restoration


  1. Another beauty! I have a SX-727 that I'm in the middle of working on. Your comment about it not being an easy unit to work on, but worth the effort, is dead on.

    1. Thank you toymanmsp! SX-727 is a great and very nice looking receiver.

  2. Just finished an SX-939. No shoot on sight were in mine (must have been later production). Only exception here were the 2sc1451/2sa809. All transistors with the exception of outputs were replaced anyway. The MJE PASS voltage regulators great choices I used as well.
    Getting all of those pesky burned out indicator bulbs out of the brittle housings tricky and time consuming.
    Found all of the problem caps on the tuner board.
    Causing low frequency oscillation. Big time jackhammer type oscillation though all the way through the output section causing the protection relay shutdown. Total restoration on it. Now would like to sell it. Just not on that big auction site!

    1. i broke one of the sockets on an 880 brittle !!

  3. Hi. Thanks for documenting your work & sharing it with us! I am working on an SX-828. Your article has helped me choose the make of e-caps to use to replace mine with. I've had it for 20 years & never did anything with it till now. Mine was clearly worked on before I got it, & its not in working condition. Power amp had two output transistors replaced. I've long suspected a bad poweramp driver section, as R1 on AWR-010 power supply board is burnt. Strangely, the .5A fuse on that circuit is good. Maybe C5, C6 or C7 are in bad shape, but I havn't pulled them to test them yet, as I'm waiting for new e-caps to ship. (I want to finish what I start) The diode D5 is good, FR202 is a 2A diode, rated 4 times the fuses's value. I decided to replace the whole poweramp with a known working unit I bought on eBay. I'll recap the e-caps on it before I install it, & recap the power supply board too. The power supply board is not original either, as Q1, 2SD234P & Q3, 2SD313 were replaced with 2SD613's. The 2SD613 looks like just a higher currant & voltage version of the others, & all have the same HFE. Should I leave them? If you don't mind, what are your thoughts?

    1. Hello Mark, I am glad that my work helps others to restore their vintage gears. They are beautiful and deserve a second life. I am not familiar with 2SD613 transistors but I checked the datasheet and it looks like they should be a good substitution on these two positions Q1 and Q3. They also have better power dissipation characteristics in comparison to the original transistors. I would probably leave them. Pay attention to the resistor R12 on the power supply board. I replaced it with a flameproof 3W metal oxide resistor (P/N: MOS3CT631R331J).

  4. my only question is replacing the original power cord an advantage?

    1. It makes sense if the original power cord is in poor condition (cracks, damaged insulation, etc.). You will also need a new strain relief bushing.

  5. The time and effort you take to share your work with us is greatly appreciated. I recently rebuilt a SX 828 and am blown away at the results. The tech showing me the ropes likes to step up to the next higher uF and voltage level when replacing e-caps. Would there be any negative consequences to this practice besides in a tuner section?
    All The Best,

    1. Hello Mark,

      Usually, the max operating voltage of the electrolytic capacitor can be increased one step up without any negative impact on the circuit. The rule of thumb here is that: ideally, the operating voltage of the e-cap should be below 80% of its max operating voltage. In that case, a long and healthy lifespan is expected. But you should be very careful if you want to change the rated capacitance. The changing of the capacitance can (and will) change the operating of the circuit and potentially can increase the stress on the other parts of the circuit and reduce overall reliability. I am not in favor of changing the capacitance of e-caps when I am doing these restorations. I always prefer to stick with the original circuit design.

  6. Hi, Oleg. Thank you for sharing your knowledge and experience. I just got a Pioneer SX-828, but is needs lots of work. There is a short on the Main Amp board somewhere and the power supply board needs rebuilding. I want to start by replacing the Main Amp board with a functioning one I got on eBay and after that I will attempt to rebuild the power supply. I took the four screws off the board, but it still does not lift out. There seem to be another area where it attaches. I found two wires that attach to the heat sink. We’ll my question is, what is the best way to disconnect the Main Amp board so I can replace it with the new one? Thanks for the help.

    1. Hi, does your Main Amp board you got on eBay still has wires connected to the TO-3 transistor sockets? You need to remove four power transistors from the heat sink, unscrew four screws, and then the Main Amp board will be released from the chassis and heat sink.